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Introduction

We find indication of an approach to phase transition in nuclear matter by studying the
two-point function

Π(E, ~p) = i

∫
dtd3x ei(Et−~p·~x)Tr[e−β(H−µN)Tη(x)η̄(0)]/Z , Z = Tr e−β(H−µN) (1)

at non-zero nucleon chemical potential (µ) and zero temperature. Here η(x) is a three-
quark current, having the quantum numbers of the nucleon. H and N are the Hamiltonian
and the Number operator of the system. Clearly Π(E, ~p), written in terms of quark fields,
is closely related to the nucleon propagator.

Unfortunately, unlike the case at finite temperature and zero nucleon chemical potential,
a straightforward calculation of Π(E, ~p) based on Feynman graphs is not possible in this
case. The difficulty is due to the appearance of new (unknown) and presumably large
couplings.
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Here the complete ηN vertex and the complete N self-energy are analysed in terms of low
order perturbative vertices. Thus, up to terms linear in the nucleon field N(x), the current
η(x) is

η(x) = λ

(
1 +

iφ(x) · τ
2Fπ

γ5 + · · ·
)

N(x) , (2)

where φ(x) is the pion field and Fπ is defined as usual by

〈0|Ai
µ(x)|πj(k)〉 = iδijkµFπe

ik·x , Fπ = 93 MeV , (3)

just as λ is defined by
〈0|η(x)|N(p)〉 = λu(p)eip·x, (4)

where u(p) is a positive energy Dirac spinor. The value of λ is obtained from QCD sum
rules for nucleon in vacuum,

λ2 = (1.2 ± 0.6) × 10−3GeV6 . (5)
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Now terms in η proportional to NNN may also be obtained in the same way, but it brings
in two more new coupling constants. Thus Unlike the vertex ηNφ in graph (b), which is
related to the vertex ηN of graph (a) itself, the vertex ηNNN in graph (c) is unknown and
unlikely to be small.

For the self-energy graphs, we see that the graph (e), which can be calculated with the
familiar pion-nucleon Lagrangian, the other graph (f) poses difficulty, even though chiral
symmetry dictates the form of the four-nucleon effective Lagrangian,
S. Weinberg, Nucl. Phys. B363, 3 (1991)

Indeed, if one does calculate the graph (f) with this four-nucleon interaction, one gets an
unacceptably large value for the nucleon self-energy
D. Montano, H.D. Politzer and M.B. Wise, Nucl. Phys. B375, 507 (1992).
The problem can be traced to the fact that there are bound and virtual states very close to
threshold in the NN system.
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In view of these difficulties, we give up calculating the nucleon self-energy and evaluate
only the nucleon pole residue, by writing a QCD sum rule for an appropriate amplitude
representing the two-point function.

For the nucleon pole term in the medium, we take the nucleon self-energy from the vari-
ational and the Brueckner type calculations using the phenomenological NN interaction
potentials
R. Brockmann and Machleidt, Phys. Rev. C 42, 1965 (1990).
B. tar Haar and R. Malfliet, Phys. Rep. 149, 207 (1987)

The contributions from the remaining low energy singularities (branch cuts) are obtained
by evaluating the relevant Feynman graphs.

QCD sum rules in medium are usually written for complete amplitudes, including their
contributions from the vacuum. A sum rule of this type cannot be sensitive to the medium
contributions. The reason is that in such sum rules the vacuum contributions dominate
over the density dependent ones, at least at low densities, making the latter appear as non-
leading terms.

In this work we subtract out the vacuum sum rule from the corresponding one in medium,
that is, we exclude the vacuum contributions from both the spectral and the operator sides.
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Spectral side of sum rule

For the low energy part of the spectral side of the sum rule, we take, besides the complete
nucleon pole, also the branch cuts from πN exchange.

We shall calculate amplitudes in the real time version of the field theory in medium,
where a two-point function assumes the form of a 2 × 2 matrix. But the dynamics is given
essentially by a single analytic function, obtained by diagonalising the original matrix. Thus
if Π11(E, ~p) is the 11-component of the original matrix amplitude, the corresponding analytic
function, to be denoted by the same symbol as in Eq. (1), has the spectral representation,

Π(E, ~p) =

∫ ∞

−∞

dE ′

2π

σ(E ′, ~p)

E ′ − E − iηǫ(E ′)
(6)

where the spectral function is related to the imaginary part of Π11 by

σ(E, ~p) = 2coth{β(E − µ)/2} ImΠ11(E, ~p). (7)

For generality we calculate the amplitudes retaining both µ and β and take the limit of zero
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The two-point function due to the free propagation of nucleon, namely

− λ2

p/ − m + iǫ

is modified by the vertex and the self-energy corrections of Figs. (a), (b) and (c) to

Π(E, ~p)|(a+b+c) = − λ∗2

p/ − m − Σ(p)
(8)

where λ∗ is the modified coupling and Σ(p) is the nucleon self-energy in nuclear matter.

Here we restrict to ~p = 0, when Σ = ΣS + γ0ΣV . Then Eq. (8) becomes

Π(E)|(a+b+c) = −λ∗2 γ0(E − ΣV ) + m∗

(E − m1)(E − m2)
. (9)

The scalar part ΣS of the self-energy changes the mass m of the free particle to the effective
mass m∗ in the medium, m∗ = m+ΣS. The vector part ΣV shifts the rest energies, ±m∗ of
the nucleon and the antinucleon, to m1 = m∗+ΣV and m2 = −m∗+ΣV respectively of the
corresponding quasi-particles. Following our discussion earlier, we work with the subtracted
nucleon pole term (the bar over a quantity indicates this subtraction),

Π(E)|(a+b+c) = Π(E)|(a+b+c) + λ2γ
0E + m

E2 − m2
(10)
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The contribution of the graph (d) is given by

Im Π(E)11|(d)

tanh[β(E − µ)/2]
= −

(
3λ2π

4F 2
π

) ∫
d3q

(2π)34ω1ω2
×

[(−γ0ω1 + m){(1 − n+ + n)δ(E − ω1 − ω2)

+(n+ + n)δ(E − ω1 + ω2)} − (ω1,2 → −ω1,2, n+ → n−)] (11)

Here ω1 =
√

m2 + ~q 2, ω2 =
√

m2
π + ~q 2 and n± and n are respectively the distribution

functions for nucleons, antinucleons and pions,

n±(ω1) =
1

eβ(ω1∓µ) + 1
, n(ω2) =

1

eβω2 − 1
(12)

Restricting to zero temperature, n+ → θ(µ − ω1), we get the spectral function as

σ(E)|(d) =
3λ2

16πF 2
πE

√
ω2 − m2(γ0ω − m) (13)

on the Landau cut (0 ≤ E ≤ m−mπ) and the negative of the same quantity on the unitary
cut (m + mπ ≤ E ≤ ∞ ) . Here ω = (E2 + m2 − m2

π)/(2E). Because of the θ-function in
the integrand, the two cuts shrink respectively to

µ −
√

µ2 − m2 + m2
π ≤ E ≤ m − mπ (14)

and
m + mπ ≤ E ≤ µ +

√
µ2 − m2 + m2

π. (15)
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We now adopt a choice of the amplitude suggested in
X. Jin, et al, Phys. Rev. C49, 464 (1994)

to split Π into even and odd parts, Π(E) = Π
(e)

(E2) + EΠ
(o)

(E2),

and deal with the combination, Π̃(E2) = Π
(e)

(E2) − m2Π
(o)

(E2). It removes the quasi
anti-nucleon pole and becomes proportional to 1

2
(1 + γ0)

We thus get the amplitudes of the different graphs of as

Π̃(E2)|(a+b+c) = − 2λ∗2m∗

E2 − m2
1

+
λ2(m − m2)

E2 − m2
(16)

Π̃(E2)|(d) =
3λ2

32π2F 2
π

∫

C

dE ′

E ′
f(E ′)

E ′2 − E2
(17)

Π̃(E2)|(e+f) = − 3λ2gA

16π2F 2
π

∫

C

dE ′

E ′
E ′ + m

E ′ − m

f(E ′)

E ′2 − E2
.

(18)

with f(E) = (E−m2)
√

ω2 − m2(ω−m) and the subscript C on integrals denotes difference
of contributions over the unitary and the Landau cuts.



Nuclear Matter Slide 10/20

Operator side of sum rule

We now need the explicit form of the nucleon current η(x)D,i with spin and isospin indices
D annd i in terms of the quark fields, which for proton (i = 1) is

η(x)D,1 = ǫabc(uaT (x)Cγµub(x))(γ5γµd
c(x))D ,

where C is the charge conjugation matrix and a, b, c are the colour indices.

The unit operator does not contribute to our sum rule. The other operators form two sets:
the old set, appearing already to the vacuum sum sum rule and the new set, involving uµ,
the four-velocity of the medium.

We denote by q any of the u and d quark flavours. Then the contributing operators of lowest
dimension are qq, qu/q (=q†q in the rest frame of matter, where uµ = (1,~0)). Next, there are
the operators of dimension four, namely G2 = (αs/π)Ga

µνG
µνa and Θf,g ≡ uµuνΘf,g

µν , where

Θf,g
µν are the usual (traceless) energy-momentum tensors of quarks and gluons respectively.

Of the remaining operators we retain only the four-quark operators.
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In terms of the above operators, the operator expansion gives

Π(E,~0)
OPE−→ 1

4π2
(〈ūu〉 + 4〈u†u〉γ0)E2 ln(−E2/µ2)

− 1

6π2

(
3

16
〈G2〉 + 5〈Θf〉

)
γ0E ln(−E2/µ2)

− 2E

3E2
(γ0〈ūu〉2 + 2〈ūu〉〈u†u〉) (19)

with coefficients to zeroth order in αs. The renormalization scale µ is taken at 1 GeV.

We now estimate the operator matrix elements. Ignore renormalisation group improvrments.
Factorisation of four-quark matrix element with correction

〈ūu〉2 → (1 − f)〈0|ūu|0〉2 + f〈ūu〉2 (20)

where f is a real parameter in the range 0 ≤ f ≤ 1.

The nucleon number density n is related to the Fermi momentum pF by n = 2p3
F/(3π2).

In normal nuclear matter, it is given by n0 = (110 MeV)3 corresponding to pF = 270 MeV.
To first order in n, the change in the expectation value of an operator O in nuclear matter
relative to that in vacuum is given by its nucleon matrix element as

〈O〉 = 〈0|O|0〉 +
〈p|O|p〉

2m
n (21)

We now apply this equation to the different operators.



Nuclear Matter Slide 12/20

For ūu and u†u, we get

〈ūu〉 = 〈0|ūu|0〉 +
σ

2m̂
n, 〈u†u〉 =

3

2
n (22)

where σ is the so-called nucleon σ-term,

σ = m̂〈p|ūu|p〉/m = 45 ± 8 MeV . (23)

The quark mass and the vacuum condensate are related by the Gell-Mann, Oakes and
Renner formula,

F 2
πm2

π = −2m̂〈0|ūu|0〉 . (24)

Two determinations of these quantities exist in the literature,

m̂ = 7.2 MeV , 〈0|ūu|0〉 = −(225 MeV)3 (25)

m̂ = 5.5 MeV , 〈0|ūu|0〉 = −(245 MeV)3 (26)

Wwe may write the condensate in nuclear matter as

〈ūu〉 = 〈0|ūu|0〉
(

1 − σ n

m2
πF

2
π

)
, (27)

which vanishes at n = 2.8n0.
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Next, for Θf we can write the nucleon matrix element as

〈p|Θf
µν|p〉 = 2Af(pµpν − gµνm

2/4) Af = 0.62, (28)

Then noting the normalization condition, 〈0|Θf
µν|0〉 = 0, we get,

〈Θf〉 =
3

4
mAfn (29)

Finally for the operator G2, we use the trace anomaly to relate it to the trace of the full
energy momentum tensor Θµν,

Θµ
µ = −9

8
G2 + 2m̂ūu + c · 1 (30)

where we add the c-number term to fix again its vacuum normalization, 〈0|Θµν|0〉 = 0.
Taking the vacuum and the ensemble expectation values, we get

〈G2〉 = 〈0|G2|0〉 − 8

9
(m − σ)n (31)
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With the above results, we can subtract out the vacuum contributions from Eq.(29) for
Π(E, 0) and write the result for the amplitude combination (22) as

Π̃(Q2)
OPE−→[

− A

8π2
Q2 ln

(
Q2

µ2

)
+

Bm2

8π2
ln

(
Q2

µ2

)
− 2Cm2

3Q2

]
n

(32)

where A, B and C stand for the constants,

A =
σ

m̂
+ 12

B = 5mAf − 2

9
(m − σ)

C = 〈0|ūu|0〉
(
f

σ

m̂
+ 3

)
(33)
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Sum rule

It is now simple to take the Borel transform of the spectral and the operator sides and get
the desired sum rule

λ∗2 = λ2em2
1/M

2

[
m − m2

2m∗ e−m2/M2 − 3

64π2F 2
πm∗×

∫

C

dE

E
f(E)

{
1 − 2gA

(
E + m

E − m

)}
e−E2/M2

− M 2

2λ2m∗

(
M 2

8π2
AV2 +

m2

8π2
BV1 +

2Cm2

3M 2

)
n

]
(34)

where f(E) is given earlier and V1 = 1 − e−W 2/M2
, V2 = 1 − (1 + W 2/M 2)e−W 2/M2

.
The deviation of V1,2 from unity represents the contribution from the high energy region on
the spectral side, obtained by continuing the result for operator expansion to the time-like
region. Here W is a parameter determining the onset of this continuum contribution. We
take W = 2 GeV, as assumed for the vacuum sum rules.

Distant singularities on the spectral side ?
Higher dimension operators on the operator side ?
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Evaluation

Among all the parameters, it is the λ, which enters most sensitively in the sum rule and
also suffers from the largest uncertainty in its value (λ2 = (1.2 ± 0.6) × 10−3GeV6) Thus
we fix λ by requiring maximal stability of the results against variation with respect to the
Borel mass. Numerical evaluation shows that bigger the value of λ, the more stable is the
result. Thus taking λ2 = .0018 GeV6, the largest in the allowed range, we see that there is
a reasonable plateau up to about normal nuclear density.

0.8 1 1.2 1.4 1.6
M

0

0.2

0.4

0.6

0.8

1

λ∗ 
2 /λ

 2

0.25

0.5

1.0

1.5
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Finally we vary the values for the sigma term and for the pair, the quark mass and the quark
condensate. As seen from Fig. 5, the uncertainty in these parameters again does not give
rise to any significant spread in the values of λ∗. Also the term with the parameter f arising
from the approximation to the four-quark condensate is relatively too small to change the
results appreciably.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/n0

0.0

0.2

0.4

0.6

0.8

1.0

λ∗ 
2 /λ

 2

set I
set II
set III
set IV

We thus show unambiguously a decreasing trend for λ∗ with the rise of density at least up
to normal nuclear density.
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Different results

We now bring together some similar, known results for current-particle couplings and the
quark condensate. Consider first the pionic medium at low temperature. The coupling
parameter Fπ in vacuum changes to F T

π ,

F T
π = Fπ

(
1 − T 2

12F 2
π

)
. (35)

The coupling of the baryonic current with nucleon, that we are considering here, also changes
from the vacuum value λ to λT ,

λT = λ

{
1 − (g2

A + 1)

32

T 2

F 2
π

}
, (36)

For the quark condensate, we have

〈ūu〉T = 〈0|q̄q|0〉
(

1 − T 2

8F 2
π

)
, (37)

where we keep only the leading term, though it has been calculated up to O(T 6).
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Considering nuclear matter (at zero temperature), the Lorentz invariance already breaks
at leading order for the axial-vector current coupling to pion,

kµFπ → k0F
t
πδµ0 + kiF

s
πδµi (38)

giving rise to two decay parameters. They change with nuclear density as

F t
π = Fπ

{
1 − (0.26 ± 0.04)

n

n0

}
(39)

F s
π = Fπ

(
1 − (1.23 ± 0.07)

n

n0

}
(40)

Observe that the two parameters have quite different density dependence. But one can
argue [?] that it is the temporal component that reflects the spontaneous breaking of chiral
symmetry. To these pion decay parameters, we add the result of the present work,

λ∗ = λ

{
1 − (0.20 ± 0.04)

n

n0

}
, (41)

obtained as a linear fit to the curves of the last Fig. up to normal nuclear density. Also the
quark condensate in this medium was stated earlier,

〈ūu〉 = 〈0|ūu|0〉
(

1 − σ n

m2
πF

2
π

)
, (42)
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Conclusion

All these results for the current particle couplings and quark condensate are low-density
expansions in pionic and nuclear matter. We know that any such density expansion of
the parameters, even if carried to arbitrarily high order, would not be valid close to phase
transition.

It is, however, the case that often the above first order formulae give critical values in qual-
itative agreement with lattice and exact model calculations. The best example is 〈q̄q〉T , for
which the value given by the linear formula is of the same order as the one from the lattice.

Thus at finite temperature, the same value approximately for the coefficients of T 2 in F T
π , λT

and 〈q̄q〉T tends to support the expectation that they all go to zero at the same (critical)
temperature. In the same way, at finite nucleon chemical potential, we find that the coef-
ficients of n are again approximately the same for all the three quantities, allowing us to
expect that they all disappear together at the same critical density, which is several times
away from the normal nuclear density.

Our calculation at finite nuclear density together with this speculation has an added im-
portance in that quantitative calculation on the lattice proves difficult at finite chemical
potential, as summarised in a recent review,
R.S. Bhalerao and R. Gavai, arXiv: 0812.1619v1 [hep-ph]


